The Rise and Fall of Plankton: Long-Term Changes in the Vertical Distribution of Algae and Grazers in Lake Baikal, Siberia
نویسندگان
چکیده
Both surface water temperatures and the intensity of thermal stratification have increased recently in large lakes throughout the world. Such physical changes can be accompanied by shifts in plankton community structure, including changes in relative abundances and depth distributions. Here we analyzed 45 years of data from Lake Baikal, the world's oldest, deepest, and most voluminous lake, to assess long-term trends in the depth distribution of pelagic phytoplankton and zooplankton. Surface water temperatures in Lake Baikal increased steadily between 1955 and 2000, resulting in a stronger thermal gradient within the top 50 m of the water column. In conjunction with these physical changes our analyses reveal significant shifts in the daytime depth distribution of important phytoplankton and zooplankton groups. The relatively heavy diatoms, which often rely on mixing to remain suspended in the photic zone, shifted downward in the water column by 1.90 m y(-1), while the depths of other phytoplankton groups did not change significantly. Over the same time span the density-weighted average depth of most major zooplankton groups, including cladocerans, rotifers, and immature copepods, exhibited rapid shifts toward shallower positions (0.57-0.75 m y(-1)). As a result of these depth changes the vertical overlap between herbivorous copepods (Epischura baikalensis) and their algal food appears to have increased through time while that for cladocerans decreased. We hypothesize that warming surface waters and reduced mixing caused these ecological changes. Future studies should examine how changes in the vertical distribution of plankton might impact energy flow in this lake and others.
منابع مشابه
Sixty years of environmental change in the world's largest freshwater lake – Lake Baikal, Siberia
High-resolution data collected over the past 60 years by a single family of Siberian scientists on Lake Baikal reveal significant warming of surface waters and long-term changes in the basal food web of the world’s largest, most ancient lake. Attaining depths over 1.6 km, Lake Baikal is the deepest and most voluminous of the world’s great lakes. Increases in average water temperature (1.21 1C s...
متن کاملReconstruction of early Neolithic/Bronze Age population diversity in the Shamanka II cemetery at Lake Baikal using mtDNA polymorphism
Mitochondrial deoxyribonucleic acid (mtDNA) polymorphisms were examinedin bone samples of individuals buried inan early Neolithic (c. 5800–4900 BCE) hunter-gatherer cemetery, Shamanka II, located atthe southwestern tip of Lake Baikal, Siberia. The mainobjective was to compare the mtDNA polymorphisms observed at Shamanka II to those previously reportedfrom the Lokomotiv (early Neolithic) and Ust...
متن کاملInfluence of Long-Distance Climate Teleconnection on Seasonality of Water Temperature in the World's Largest Lake - Lake Baikal, Siberia
Large-scale climate change is superimposed on interacting patterns of climate variability that fluctuate on numerous temporal and spatial scales--elements of which, such as seasonal timing, may have important impacts on local and regional ecosystem forcing. Lake Baikal in Siberia is not only the world's largest and most biologically diverse lake, but it has exceptionally strong seasonal structu...
متن کاملA study of the effect of changes in the area of Maharlu lake on climatic parameters of Shiraz and on land surface temperature of its surrounding areas
Remote sensing is increasingly used in studies of periodic changes of land use and landsurface temperature (LST) calculations. In this paper, the effect of change in the area ofMaharlu Lake on climatic elements, land surface temperature and vegetation cover in theareas surrounding the lake were studied. To this end, the ETM + & TM sensor data ofLANDSAT satellite on May 22, 1987, May 17, 2000, M...
متن کاملTemporal study of Solduz wetland microalgae in southern part of Lack Urmia
Phytoplankton is one of the main components of wetlands, which plays a vital role in providing nutrients, oxygen for other organisms, stabilizing nitrogen and carbon dioxide. In the meantime, the current status of Lake Urmia highlights the need to conserve and protect wetlands related to these ecosystems and their living and non-living components. Therefore, this study was conducted to assist i...
متن کامل